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In this work, chemical oxidation of mesotrione herbicide by Fenton process in acidic medium (pH 3.5)
was investigated. Total disappearance of mesotrione and up to 95% removal of total organic carbon
(TOC) were achieved by Fenton’s reagent under optimized initial concentrations of hydrogen perox-
ide (H2O2) and ferrous iron (Fe2+) at pH 3.5. The time-dependent degradation profiles of mesotrione
were satisfactorily fitted by first-order kinetics. Competition kinetic model was used to evaluate a rate
constant of 8.8(±0.2) × 109 M−1 s−1 for the reaction of mesotrione with hydroxyl radicals. Aromatic and
enton process
riketone herbicide
ydroxyl radicals
inetic analysis
OC removal

aliphatic intermediates of mesotrione oxidation were identified and quantified by high performance
liquid chromatography (HPLC). It seems that the degradation of mesotrione by Fenton process begins
with the rupture of mesotrione molecule into two moieties: cyclohexane-1,3-dione derivative and 2-
nitro-4-methylsulfonylbenzoic acid. Hydroxylation and release of sulfonyl and/or nitro groups from
2-nitro-4-methylsulfonylbenzoic acid lead to the formation of polyhydroxylated benzoic acid derivatives
which undergo an oxidative opening of benzene ring into carboxylic acids that end to be transformed

into carbon dioxide.

. Introduction

Herbicides are widely used in agriculture and management of
rasslands in the landscape. Almost all herbicides in use today
re considered organic herbicides in that they contain carbon as
primary molecular component. Herbicides have been detected

n surface and ground water [1–6], despite their rapid micro-
ial and photo-induced decomposition. However, concerns about
he potential impacts of pesticides on human health have arisen
ecause the extensive use of these substances leads to their pres-
nce, together with their metabolites, in surface wastewaters from
gricultural activities and in drinking waters. Herbicides may pose
n environmental threat because they are designed to have a spe-
ific physiological effect on humans or animals since some of them
re known to be xenobiotic, mutagenic, carcinogenic or terato-

enic [7–10]. Their elimination from wastewater effluents is now
he subject of considerable concern of environmental remediation
nd has attracted many researchers in recent years [9,10]. Because
erbicides are toxic to many organisms, conventional biological
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remediation processes are not suitable to completely remove her-
bicides from contaminated water [11–14], and therefore more
effective treatment methods are required. Partial removal of her-
bicides during wastewater treatment processes has led to the
detection of these compounds in a variety of surface water and
groundwater throughout the world [1,2,14].

Advanced oxidation processes (AOPs) are alternative to tradi-
tional treatment and have recently received considerable attention
for herbicides removal [15–19]. In the last decade, these processes
have been shown to be effective for the destruction of refractory
pollutants [20,21]. They are based on the generation of highly
reactive and oxidizing hydroxyl radicals (HO•). Fenton’s reagent,
H2O2/UV, O3/UV, TiO2/air/UV are the main types of AOPs that have
been suggested. Various combinations of them are employed for
complete mineralization of pollutants. Fenton process is a promis-
ing and easy to manipulate advanced oxidation technology in which
a mixture of hydrogen peroxide (H2O2) and ferrous iron (Fe2+) salts
is added directly to the wastewater. This mixture promotes the for-
mation of HO• radicals by catalytic decomposition of H2O2 in acidic
medium (pH in the range 3–4) as shown by the reactions sequence
(1–5):
Fe2+ + H2O2 → Fe3+ + OH− + OH• (1)

Fe3+ + H2O2 → Fe(OOH)2+ + H+ (2)

Fe(OOH)2+ → HO2
• + Fe2+ (3)

dx.doi.org/10.1016/j.jhazmat.2011.02.060
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
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e3+ + HO2
• → Fe2+ + H+ + O2 (4)

e2+ + OH• → Fe3+ + OH− (5)

n addition to the oxidation mediated by HO• radicals, ferric ions
enerated during the first stage can promote the removal of pollu-
ants by coagulation. Fenton’s reagent is used for many years in the

unicipal and industrial water and wastewater treatment indus-
ry [22]. Fenton oxidation is also applied in soil and groundwater
reatment for the removal of persistent contaminants [22–24]. Free
xidizing radicals react non-selectively with organic contaminants
n oxidation/reduction reactions sequences to form environmental
riendly and biodegradable compounds [25,26]. Industrial appli-
ations Fenton process involved several stages including (i) pH
djustment, (ii) oxidation/reduction reactions, (iii) neutralization
nd coagulation, and precipitation. The main operation parame-
ers of this process are H2O2 and Fe2+ doses, organic content and
H.

The goal of this work is to investigate the degradation of mesotri-
ne (benzoylcyclohexanedione herbicide) in aqueous solutions by
enton’s reagent in order to support the development of Fenton
rocess as practical treatment method to remove triketone herbi-
ides from water. The triketone herbicides represent the newest
lass of herbicides that have been introduced onto the market
oday. Mesotrione was the first of these herbicides used in agri-
ulture to replace atrazine and within short time became one of
he most popular herbicides used by farmers to control broadleaf
eed in maize [27–29]. However, it may affect microbial activity

nd can exhibit moderate retention capacity in soil and so can be
eached to surface water [29]. Additionally, in our best of knowl-
dge there is no information in the literature concerning its removal
rom water and especially its degradation pathways by AOPs are
oorly known [30–35]. The influence of H2O2 and Fe2+ doses under
cidic conditions on mesotrione and TOC removals was studied.
romatic and aliphatic byproducts of mesotrione oxidation by Fen-

on’s reagent were identified and quantified by high performance
iquid chromatography (HPLC) analyses. Based on HPLC results a
imple mechanism of mesotrione oxidation by Fenton’s reagent
as proposed.

. Experimental

.1. Chemicals

Mesotrione herbicide (2-[4-methylsulfonyl-2-nitrobenzoyl]-
,3-cyclohexanedione), 2,4-dihydroxybenzoic acid (DHBA), 2-
itrobenzoic acid (NBA), 4-chlorobenzoic acid (CBA) and benzoic
cid (BA) and were purchased from Sigma–Aldrich in analytical
rade form (purity >99%). 2-nitro-4-methylsulfonylbenzoic acid
NMSBA), 4-methylsulfonylbenzoic acid (MSBA) were obtained
rom Wuhan CheMax Chemical Industrial Co., Ltd., China. Car-
oxylic acids (>99%) were of analytical grade and purchased from
luka. Hydrogen peroxide was a 30% (w/w) solution (ACS reagent,
igma–Aldrich). The other chemicals such as sulfuric acid, sodium
ydroxide, ferrous sulfate heptahydrate, are of analytical grade and
urchased from Sigma–Aldrich or Fluka.

.2. Analytical procedures

The carbon concentration was monitored using Shimadzu TOC-
050 analyzer. The degradation of mesotrione herbicide was

ollowed by liquid chromatography. Aromatics were monitored by
PLC using a Nucleosil C18 column (mobile phase 74% water–25%
ethanol–1% acetic acid; flow rate, 0.70 mL min−1). In this case,

he UV detector was set to 270 nm to give linear calibration curves
ith a detection limit higher than 0.2 �M for all aromatic com-
s Materials 189 (2011) 479–485

pounds. Carboxylic acids were monitored with a detection limit
higher than 0.1 �M by HPLC using a Supelcogel H column (mobile
phase, 0.15% phosphoric acid solution; flow rate, 0.15 mL min−1).
The UV detector was set at 210 nm. All calibration curves were
linear with correlation values (R2) higher than 0.97. H2O2 was mea-
sured according to Eisenberg [36].

2.3. Fenton process

Fenton oxidation assays were carried out in lab-scale ther-
mostated mixed batch reactors. The experimental setup consists
of a multistirrer device (Ikamag RO 5 power, IKA-WERKE GmbH &
Co. KG, Staufen, Alemania) with fifteen mixing sites coupled with a
controlled thermostatic bath (Digiterm 100, JP Selecta, Barcelona,
Spain). Pyrex flasks (250 cm3) hermetically sealed and equipped
with magnetic stirrers were used as reactors. They were submerged
in the thermostatic bath. Stock solution of 2 mM mesotrione was
prepared in deionized water from the Millipore system (resistiv-
ity 18.2 M� cm and TOC ≤ 5 ppb). Aqueous solutions of mesotrione
were prepared at appropriate concentration by diluting the stock
solution in deionized water. In each assay, the reactors were filled
with 100 cm3 of mesotrione aqueous solution. Then, an appropri-
ate amount of Fe2+ in the range from 0 to 4 mM was added (as
FeSO4·7H2O) and the pH was adjusted to 3.5 ± 0.1 with sodium
hydroxide or sulphuric acid. According to literature [37,38], this
pH is in the optimum range of pH (3–4) to promote the formation
of HO• radicals in Fenton process, which has been verified by per-
forming several experiments for pH ranges from 3 to 6, and it was
found that 95–100% TOC removal was obtained in the pH range of
3–4. In all cases, the reaction was started by adding appropriate
dose of H2O2 (30%) to obtain concentrations of 2–20 mM H2O2 in
solution. Preliminary experiments were carried out to determine
the time needed to meet the steady state conditions (no changes in
mesotrione and TOC removals and total disappearance of H2O2).
From these experiments a reaction time of 4 h was selected (a
period of time necessary for total disappearance of H2O2 obtained
in equilibrium experiments). During kinetic experiments, samples
were taken at desired reaction times. For each taken sample 0.1 g
of sodium sulphite was immediately added to quench H2O2 and
stop Fenton reaction and then was filtered through 0.45 �m car-
tridge. Concentrations of TOC, mesotrione, oxidation by-products
and H2O2 were measured. Several set of experiments (in duplicate)
were carried out at fixed pH of 3.5 to determine the range of H2O2
and Fe2+ needed to obtain optimum results.

3. Results and discussion

Fig. 1 presents the changes of mesotrione and TOC concen-
trations as function of time during Fenton treatment of aqueous
solution containing 0.2 mM mesotrione and 1 mM Fe2+ at pH 3.5
using different H2O2 initial concentrations. Total disappearance
of mesotrione was obtained for all H2O2 concentrations used in
range 2–20 mM H2O2. The increase of H2O2 initial concentration
from 2 to 16 mM decreases time needed to reach almost total dis-
appearance of mesotrione from 40 min to 15 min but H2O2 initial
concentration greater than 16 mM has lower influence on this time.
Also, Fig. 1b shows that the increase of H2O2 initial concentration
enhances efficiency of TOC removal. Indeed, increasing of H2O2
initial concentration from 2 mM to 16 mM increases TOC removal
from 57% to 96% after 60 min Fenton treatment. When 20 mM H2O2

was added to 0.2 mM mesotrione aqueous solution Fenton process
achieves total TOC removal within 60 min treatment. It is then evi-
dent that an initial concentration of H2O2 higher than 16 mM does
not increase enough kinetics or efficiency of Fe2+/H2O2 treatment in
terms of mesotrione disappearance and TOC removal. Accordingly,
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ig. 1. Influence of H2O2 initial concentration on changes with time of (a) mesotri-
ne concentration, and (b) TOC during Fenton treatment of aqueous solution
ontaining 0.2 mM mesotrione and 1 mM Fe2+ at pH 3.5.

2O2 concentration of 16 mM is optimal for a complete disappear-
nce of mesotrione in 15 min and total TOC removal in 90 min
enton treatment of aqueous solutions containing 0.2 mM mesotri-
ne and 1 mM Fe2+ at pH 3.5. For low H2O2 initial concentrations,
O• radicals generated from the catalytic decomposition of H2O2

reaction (1)) cannot totally degrade mesotrione and remove high
mount of TOC. As H2O2 initial concentration increases, HO• radi-
al increases and hence the rates of mesotrione disappearance and
OC removal are increased. For higher H2O2 initial concentrations,
lthough theoretically more HO• radicals can be produced (reac-
ions (1–5)), the rate and percentage of TOC removal remain almost
he same. This can be explained by the competition between the
eaction of hydroxyl radicals with organics and scavenging them
y H2O2 in excess (reactions (6 and 7)) which does not provide an

ncrease in HO• radicals [39]. The scavenging effect of H2O2 reduces
he efficiency of the treatment through the consumption of HO•

adicals leading to the formation of HO2
• radicals (reaction (7)).

O2
• radicals have lower oxidation potential than HO• radicals, and
hen their contribution in the removal of TOC is lower than that of
O• radicals. Also when the concentration of H2O2 becomes suffi-
iently high, the secondary reaction of H2O2 auto-decomposition
nto O2 and H2O (reaction (8)) is thermodynamically shifted to the
Fig. 2. (a) Kinetics analysis of mesotrione degradation during Fenton treatment, (b)
variation of apparent pseudo-first order rate constant kapp vs. H2O2 initial concen-
tration. Experimental conditions: 0.2 mM mesotrione, 1 mM Fe2+, pH 3.5, different
H2O2 concentrations.

right and then a significant amount of H2O2 is consumed by this
reaction.

HO• + OrganicPollutant � Products (6)

HO• + H2O2 � HO2
• + H2O (7)

2 H2O2 � O2 + 2H2O (8)

Kinetic analysis was performed in order to identify mesotrione
degradation kinetics and to evaluate the rate constant of mesotri-
one with hydroxyl radicals. The plots of mesotrione concentration
vs. time indicate in a first approach, that degradation of mesotrione
can be described by a pseudo-first-order kinetics as given by Eq. (9).

−d[M]
dt

= kapp[M] (9)
where [M] is the concentration of mesotrione at instant t, kapp is the
apparent mesotrione degradation rate constant, and t is the time.

According to this assumption, the rate equation can be inte-
grated (Eq. (10)) with the boundary conditions [M] = [M]0 for t = 0
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ig. 4. Influence of Fe2+ dose on the evolution with time of mesotrione concentra-
ion during Fenton treatment. Experimental conditions: 0.2 mM mesotrione, 16 mM
2O2, pH 3.5, reaction-time 4 h.

nd [M] = [M]t for t = t, leading to Eq. (11):
[M]t

[M]0

d[M]
[M]

=
∫ t

0

kappdt. (10)

n
(

[M]t=0

[M]t=t

)
= kapp

•t (11)

he plots of ln([M]t=0/[M]t=t) vs. time (t) at different H2O2 concen-
rations are presented in Fig. 2a. The plots are straight lines pass
y the original point with correlation coefficients (R2) higher than
.97. The linearity of ln([M]t=0/[M]t=t) = f(t) curves confirms that the
esotrione degradation rate is a pseudo-first-order reaction. In

ccordance with Eq. (11), each line has a slope equal to kapp which
s the apparent mesotrione degradation rate constant. All kapp val-
es were calculated for a same initial concentration of mesotrione
0.2 mM) and at various initial concentrations of H2O2. Fig. 2b rep-

esents the variation of kapp with H2O2 concentration. The profile of
btained kapp values vs. H2O2 dose suggests that mesotrione degra-
ation rate by Fenton oxidation increases linearly with the increase
f H2O2 concentration up to 16 mM then it reaches a plateau at
.4 min−1. Once the apparent pseudo-first-order rate constant for
Fig. 5. Changes with time of (a) of aromatic intermediates, and (b) carboxylic acids
concentrations during mesotrione oxidation by Fenton’s reagent. Experiment con-
ditions: 2 mM mesotrione, 20 mM H2O2, 2 mM Fe2+, pH 3.5.

the Fenton process have been determined, the rate constant for the
reaction of mesotrione with HO• radicals can be evaluated. This
evaluation is performed by means of a competition kinetic model,
which has been previously used by several authors [40–42]. This
model consists of the simultaneous Fenton’s reaction of a mixture of
two organic compounds: one of them is the reference compound R,
whose HO• rate constant is previously known [41]; the second com-
pound constitutes the target compound (mesotrione) M. Reactions
between hydroxyl radicals and both mesotrione and the reference
compound are considered to follow second order kinetics. Taking
into account these considerations, the reaction rate between HO•

radicals and the target compound M (mesotrione) in the mixture
can be given by Eq. (12):

−d[M]
dt

= kM−HO• [HO•][M] (12)

While this rate equation for the reference compound R, in that
mixture is expressed by Eq. (13):

−d[R]
dt

= kR−HO• [HO•][R] (13)

where kM−HO• and kR−HO• are the rate constants for the reaction of

HO• radicals with M and R, respectively. By dividing both equations
and integrating between t = 0 and t = t, Eq. (14) is obtained:

ln
(

[M]t=0

[M]t=t

)
= kM−HO•

kR−HO•
ln

(
[R]t=0

[R]t=t

)
(14)
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According to this equation, the plot of ln([M]t=0/[M]t=t) against
n([R]t=0/[R]t=t) must be a straight line with a slope equal to the
atio of rate constants; and as kR−HO• is known, kM−HO• can then
e determined. In this work, 4-chlorobenzoic acid was used as a
eference compound R, with a previously known [43] rate constant
or its oxidation by HO• radicals of kR−HO• = 5 × 109 M−1 s−1. The

lot of ln([M]t=0/[M]t=t) as function of ln([R]t=0/[R]t=t) during Fen-
on process (16 mM H2O2, 1 mM Fe2+ at pH 3.5) of a mixture of

esotrione (0.2 mM) and CBA (0.2 mM) given in Fig. 3 is straight
ine with a slop equal to 1.76. Following this procedure, a value of
.8(±0.2) × 109 M−1 s−1 was obtained for the rate constant for the
O

rione degradation by Fenton oxidation.

reaction of mesotrione with HO• radicals. This rate constant is in
same range than those mentioned in the literature for phenyl-urea
herbicides [18].

In the second set of experiments Fe2+ dose was varied from 0
to 4 mM, while pH value, mesotrione concentration, and H2O2 con-
centration were fixed at 3.5, 0.2 mM, and 16 mM, respectively. The

experimental data in Fig. 4 show the changes in residual mesotri-
one concentration with Fe2+ dose after 4 h Fenton treatment. It was
found that the residual concentration of mesotrione decreases with
increasing Fe2+ initial concentration to reach total disappearance
of mesotrione at Fe2+ concentration equal to or higher than 1 mM.
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ence, Fe2+ concentration of 1 mM is selected to be optimal for
otal mesotrione removal by Fenton process. This catalytic amount
f Fe2+ is extremely favorable to avoid the problem of sludge for-
ation and prevent further treatment stages.
To elucidate the mechanism of degradation of mesotrione by

enton process, HPLC was used to identify and quantify the main
ntermediates of mesotrione degradation. Identification of oxida-
ion byproducts was realized by comparison of retention times
ith commercially available standards and with intermediates

eported by Alferness and Wiebe [35] during biotransformation
f mesotrione in soil. Fig. 5 presents the evolution with time of
romatic and aliphatic intermediates during the treatment of aque-
us solution containing 2 mM mesotrione by Fenton oxidation of
esotrione by 20 mM H2O2 and 2 mM Fe2+ and at pH 3.5. With

hese reagents doses a slow degradation is supposed to be occurred
hich confers a high possibility to detect major oxidation interme-
iates in concentrations higher than their detection limits by HPLC.
ig. 5a shows that 2,4-dihydroxybenzoic (DHBA), 2-nitrobenzoic
NBA) and benzoic acids are main aromatic intermediates identi-
ed during the oxidation of mesotrione by Fenton process. Also
races of 2-nitro-4-methylsulfonylbenzoic acid (NMSBA) and 4-

ethylsulfonylbenzoic acid (MSBA) were also detected. Oxalic,
cetic, glycolic acid and pyruvic acids are the detectable aliphatic
ntermediates of mesotrione oxidation by Fenton oxidation (see
ig. 5b). The concentration of each intermediate shows a rapid
ncrease at the beginning of the treatment to reach a maximum
alue during the first half-hour and then it gradually decreases to
nd with a total disappearance at the end of the treatment.

According to TOC and chromatography analyses, a simple mech-
nistic scheme can be proposed. The main sequential steps of
esotrione degradation by Fenton process are given in Fig. 6.
esotrione degradation mechanism starts with HO• radicals attack

n the carbonyl group to form cyclohexanone derivatives such as
yclohexane-1,3-dione and 2-nitro-4-methylsulfonylbenzoic acid
hich is converted rapidly to benzoic, 2-nitrobenzoic and 4-
ethylsulfonylbenzoic acids by the release of sulfonyl and/or

itro groups. These intermediates could be easily transformed
nto polyhydroxybenzoic acids mainly 2,4-DHBA by hydroxylation.
olyhydroxylated benzoic acids and cyclohexanone derivatives
ndergo oxidative opening of benzene rings into aliphatic car-
oxylic acids such as oxalic, glycolic acetic and pyruvic acids.
arboxylic acids are slowly transformed into CO2, H2O and other

norganic ions in the final stages of Fenton process.

. Conclusion

Fenton process was successfully used for complete disappear-
nce of mesotrione herbicide from water within 15 min and total
OC removal during 90 min under optimized H2O2 and Fe2+ doses
nd at pH 3.5. Kinetic investigation indicated that mesotrione
egradation follows a pseudo-first order kinetic at fixed H2O2
oncentration. A rate constant of 8.8(±0.2) × 109 M−1 s−1 was
etermined for the reaction between mesotrione and HO• radi-
als through a competition kinetic model using CBA as a reference
ompound. Chromatography analyses have shown that the mech-
nism of mesotrione oxidation starts by the rupture of mesotrione
olecule into two moieties: cyclohexane-1,3-dione derivative and

-nitro-4-methylsulfonylbenzoic acid through HO• radicals attack
n the aliphatic ketone group. Successive oxidation steps lead
o the formation of polyhydroxylated benzoic acid derivatives by

ydroxylation and release of sulfonyl and/or nitro groups. The poly-
ydroxylated benzoic acid derivatives undergo a rapid oxidative
pening of benzene rings to form aliphatic carboxylic acid which
re finally mineralized into CO2, H2O. According to the results
btained in this study, it can be concluded that Fenton oxidation

[

[
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process can be a viable technology for the removal of triketone
herbicides from water.
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